5. 土づくりの機械作業

1) 土壌改良資材の散布

土壌改良資材の種類は非常に多く、様々な形状のものがある。ここでは、散布機の構造と適応資 材について説明する。

(1)ライムソワ

粉状の土壌改良資材散布を主目的にし、粒状のものも散布可能な兼用機で、乗用トラクタに装着する。写真 II -5-1 にモータ駆動方式のものを示す。

構造は、資材を詰めるホッパの下方に排出機構があり、繰り出し軸に取り付けられたビータが駆動することにより、ほ場に自然落下する仕組みである。

排出機構の駆動方式には、モータ駆動方式以外に、接地輪による駆動方式と、PTO軸駆動方式 の2種類がある。

なお、モータ駆動方式は、トラクタの前方に装着することにより、散布と耕うんの同時作業が可能である。

写真Ⅱ-5-1 ライムソワ (モータ駆動方式)

(2)ブロードキャスタ

乗用トラクタに装着し、主に粒状の土壌改良資材を散布するために用いる。円すい形のホッパに資材を詰め、シャッタから落下したものを、PTO軸から取り出した動力により散布する構造である。近年、粉状物やたい肥を散布できるものも市販されている。

散布部は、スピンナ方式とフリッカ方式の 2種類がある。スピンナ方式は、羽根が取り 付けられた円盤を回転させて散布する方式で ある。また、フリッカ方式は、円筒を左右に 振ることにより散布する方式である。

写真Ⅱ-5-2 ブロードキャスタ (スピンナ方式)

(3)マニュアスプレッダ

たい肥を散布する機械で、たい肥箱、たい肥を散布装置へ搬送する送り装置、これを細かくほぐ しながら均等に散布する散布装置により構成され、種類としては、トラクタによるけん引式と、自 走式の2種類がある。

たい肥の積み込みは、トラクタショベル(ホイールローダ)を用いて行う。この際、たい肥箱の 前方から後方に向かって積み込み、散布時のたい肥のからまりを少なくする。

写真Ⅱ-5-3 マニュアスプレッダによるたい肥散布作業

写真Ⅱ-5-4 トラクタショベル (ホイールローダ)

表Ⅱ-5-1 土壌改良資材を散布する機械

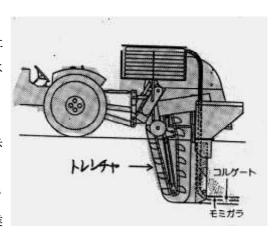
機械名	散布資材	特 徵
ライムソワ	粒状物	1. 乗用トラクタに装着
	ک	2. モータ駆動方式は、耕うん同時作業が可能
	粉状物	3. 粒状物、紛状物ともに散布可能
ブロードキャスタ	主に	1. 乗用トラクタに装着
	粒状物	2. ライムソワより散布幅が広い
マニュアスプレッダ	たい肥	1. たい肥を散布する機械
		2. トラクタによるけん引式と、自走式の2種類

2) 排水対策

耕地土壌の透水性を改善するためには、地下排水対策を講じることが必要である。また、水田に おいて輪作を行うためには、地下排水対策とともに、作物やほ場条件に対応した地表排水対策を講 じなければならない。ここでは、排水対策の作業機などについて説明する。

(1)地下排水対策

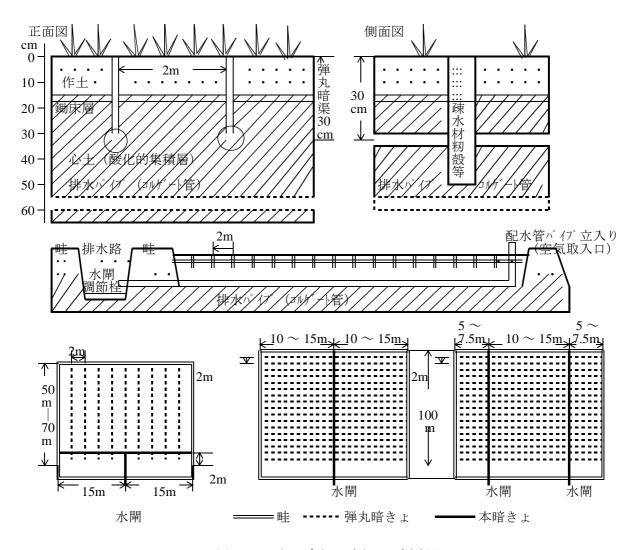
ア.暗きょ埋設機(タイル・マシン)


タイル・マシンは、トラクタに装着する作業機で、トレンチャで暗きょ溝を掘削しながら、コル ゲート管の埋設と、籾がらなどの疎水材の充填を同時に行う作業機である。

このほか、暗きょ施工には、トレンチャなどを用いて溝を掘削し、コルゲート管の埋設と疎水材 の充填を手作業で行う方法もある。

イ.サブソイラ

サブソイラは、トラクタに装着する作業機で、土中 30 cmくらいのところに、先端のチゼルにより排水用の暗きょ孔を作孔する。また、先端のチゼルが、前後に振動することにより心土の破砕も行う。また、水田では、その効果を高めるために、図 II-5-2 に示すとおり、本暗きょと直交するように作業を行う。


なお、チゼルに振動を与えることによって、トラ クタの座席振動が増大するため、長時間の連続作業 は避けることが必要である。

図Ⅱ-5-1 タイル・マシン

写真Ⅱ-5-5 サブソイラ

図Ⅱ-5-2 組み合わせ暗きょの概略図

(2)地表排水対策

ア.溝掘機 (スクリュ式)

スクリュ式の溝掘機は、トラクタに装着する作業機で、縦軸回りでスクリュを回転させながら土を上部へ排出し、溝を掘る方式のものである。水田で、麦などの畑作物を栽培するとき、耕うん・播種前に溝を掘っておくと、高い砕土率を確保できることから、苗立ち率が向上するとともに、湿害を防止することができる。

写真Ⅱ-5-6 溝掘機 (スクリュ式)

イ.畦立て機

畦立て機は、ロータリの後部に装着する作業機で、ロータリで耕うんした土を、左右2個のはつ土板によって、左右に土壌を反転する。湿害の防止や広い作土層を確保するために使用される。

写真Ⅱ-5-7 畦立て機

ウ.レーザー利用の均平作業

ほ場の均平度は、作物の生育むらや排水不良といった点から、重要な意味を持っている。そこで、 近年開発された、レーザー利用の均平機について説明する。

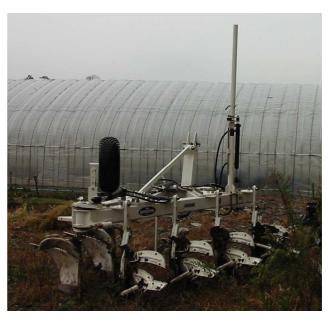
写真Ⅱ-5-8 に示すとおり、投光器から発せられるレーザー光を水平基準として、ブレードの高さを制御することによって、田面を水平に仕上げることができる。

写真Ⅱ-5-8 レーザー利用の均平作業

3) 深耕

作物根域を拡大するためには、適当な透水性を保ちながら、15 cm程度の耕深を確保することが必要である。ここでは、耕うん・耕起を行う機械の作業法を述べる。

(1)ロータリ耕


ロータリによって、土壌を撹拌する耕うん法である。土塊の破砕や均平性にすぐれており、効率的な作業が可能であるが、透水性が悪いほ場では浅耕になること、秋耕時にロータリの回転数を上げすぎると土塊が細かくなりすぎることがある。

15 cm程度の耕深とともに、適当な土塊径を確保するためには、透水性が悪いほ場では、秋耕前に心土破砕を行うことが必要であり、変速段数 $1 \sim 2$ 速(30kW 級(40ps 級)以上のトラクタなら3速でも可)、PTO変速段数 1 速で、秋耕を行うことが必要である。

(2)反転耕

プラウによって、土壌を反転する耕起法で ある。深耕が可能で、有機物の鋤込みにすぐ れているが、田植機作業に合わせた整地均平 に時間を要するため、水田ではその利用が激 減した。

近年、水平制御装置や、投光器から発せられるレーザー光を水平基準として、鋤床の高さを制御することによって、耕盤を水平に仕上げることができる、耕深制御装置が取り付けられたプラウが開発され、大幅に田植機作業への適応性が向上した。

写真Ⅱ-5-9 レーザー利用のプラウ

(3)駆動型ディスク耕

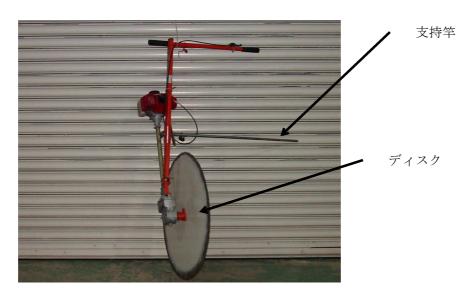
PTO動力を利用して、ディスクを強制駆動しながら耕起していく方法である。つまり、ロータリ耕と反転耕の折衷型である。

ディスクを駆動しながら作業を行うため、ロータリ耕と同じ程度の作業幅で、耕深 15 cm程度を確保できる。また、耕起土塊も大きく、反転耕より劣るものの有機物の鋤込みにすぐれている。

写真Ⅱ-5-10 駆動型ディスク

表Ⅱ-5-2 耕うん・耕起に用いる機械

作業名	作業機名	特徵
ロータリ耕	ロータリ	1. 土塊の破砕や均平性に優れている。
(かくはん耕)		2. 作業速度を上げすぎると浅耕になる。
		3. 透水性の悪いほ場では浅耕になる。
反 転 耕	プラウ	1. 深耕が可能で、有機物の鋤込みに優れている。
		2. 作業方法が悪いと、整地・均平に手間がかかる。
駆動型ディスク耕	駆動型ディスク	1. 反転耕に劣るが、深耕が可能で、有機物の鋤込み
(折衷耕)		に優れる。
		2. 土壌水分が高いと、作業に支障をきたす。


4)漏水防止対策

ほ場に入水したときや代かき時に、畦畔際にある穴や亀裂から水が漏れると、濁水や肥料成分が河川に流出し、琵琶湖の汚染につながる。そこで、ほ場に入水する前に、シートを入れたり、あぜを形成し直すなど、漏水防止対策を講じておくことが必要である。ここでは、乾田状態で漏水防止対策に用いる機械について説明する。

(1)あぜシート張り機

耕うん後のほ場で、ロール状の農ポリを支持竿に取り付け、駆動ディスクで走行しながら、農ポリの片側を耕盤下に埋設する作業を行う。作業後に、押さえた反対側を畦の上へ引き上げ、「マルチ押さえ」または土で押さえる。

なお、農ポリの厚さは、あまり薄いと破損するので、0.04 mm程度が望ましい。

写真Ⅱ-5-11 あぜシート張り機

(2)あぜ波シート張り機

耕うん後のほ場で、畦畔際を作溝しながら、専用のあぜ波シートを埋設し、同時に覆土を行う作業機である。

写真Ⅱ-5-12 あぜ波シート張り機による作業

(3)あぜ塗り機

老朽化したあぜを形成し直す機械で、乾田状態で用いる。元あぜをロータで耕うんしながら、後 部の駆動ディスクや成型器で、耕うんした土を締めながら、あぜを形成する。

写真Ⅱ-5-13 あぜ塗り機 (ディスクスリップ式)